《大数据时代》读后感

发布时间:2015年01月07日 来源:自治区疾控中心应急与信息管理科 阅读次数:

通过读舍恩伯格的《大数据时代》,我得以重新认识了大数据含义,全书以数据为核心,引导人们用数据的思维去理解世界,用数据的思维去解决问题。百度百科对于大数据的定义是:大数据技术(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

书中作者分三部分来讨论大数据,即思维变革、商业变革和管理变革。舍恩伯格旗帜鲜明的阐述了他的三个观点:一、更多:不是随机样本,而是全体数据;二、更杂:不是精确性,而是混杂性;三、更好:不是因果关系,而是相关关系。

现实生活中无处不在的大数据:各种云计算,谷歌的神通,亚马逊的推送,天涯人肉,微博万能等等,我们掌握了新的工具,也获取了以前从未有过的各种信息。大数据拉近了我们与现实的距离,“地球村”变成了“地球屋”,仿佛所有人所有事物都触手可及。如作者所言“大数据开启了一次重大时代转型。就像望远镜让我们能够感受宇宙,显微镜让我们看清微生物一样,大数据要改变的是,我们的生活方方面面以及理解世界的方式”。比如,谷歌通过全球搜索分析,比国际疾病控防中心更早更准地预测了流感爆发。

但是规模巨大的数据未必是大数据。大数据不是因为单纯体积大而大,是因为杂而大,例如:研究硬币正反面的概率如引入天文学、心理学、材料学、物理学等领域的数据而使之变大,进而研究关联关系,从而得出概率的分布,然而大量相关数据的引入,按照传统分析过程的时间是不可接受的,需利用高效计算资源,快速地把杂而大的处理结果呈现出来,并且实验者对结果的预期不能要求100%的精确。大数据并不是数据本身,而是一种思维方式。

大数据时代更加强调效率,而不要绝对的精确。执迷于精确性是信息缺乏时代和模拟时代的产物,只有5%的数据是结构化且能适用于传统数据库的。如果不接受混乱,剩下95%的非结构化数据都无法被利用。作者是基于数据不可能百分之百正确的考虑而做出这样的判断的,如果采用小数据一个数据的错误就会导致结果的误差很大,但是如果数据足够多、足够杂,那得出的结果就越靠近正确答案。大数据时代要求我们重新审视精确性的优劣,甚至还说到大数据不仅让我们不再期待精确性,也让我们无法实现精确性。谷歌翻译的成功很好地证明了这一点,谷歌的翻译系统不像Candide那样精确地翻译每一句话,谷歌翻译之所以优于IBM的Candide系统并不是因为它拥有更好的算法机制,和微软的班科和布里尔一样,谷歌翻译增加了各种各样的数据,并且接受了有错误的数据。

正是由于我们进入了一个前所未有的信息化时代,人们拥有了如此多的数据,才提供给我们利用大数据的分析处理手段,创造新的价值。也许有人以为我们大数据时代的还未来临。其实大数据技术早已渗透到我们中间,它被应用在垃圾邮件的过滤,新浪微博技术平台,谷歌翻译以及输入文字的自动纠错等。

大数据时代是信息化社会发展必然趋势,在高速迈进大数据时代的同时,人类信息管理准则需要重新定位,这将带动社会核心价值观的转变。大数据时代,对原有规范的修修补补已经不足以抑制大数据带来的风险。保护个人隐私就需要对个人数据处理器对其政策和行为承担更多责任。同时必须重新定义公正的概念,以确保人类行为的自由。作者提出了解决这些问题的方向。如个人隐私保护方面,可以让使用者承担更多的社会责任。将责任从民众转移到数据使用者有很多意义,也有充分的理由。因为他们更清楚将如何使用数据且是数据应用最大的受益者。最后结语中作者提出大数据提供给人们的只是参考答案,提醒我们在利用这个工具时要铭记人类的作用是无法完全替代的。

扫一扫 手机端浏览

官方微信
官方微博
手机版
服务热线